

#### **IMPULSE**

Impulse of a force 'F' acting on a body for a time interval  $t = t_1$  to  $t = t_2$  is defined as

$$\overrightarrow{I} = \int_{t_1}^{t_2} \overrightarrow{F} dt$$

$$\overrightarrow{I}_{Re} = \int_{t_1} \overrightarrow{F}_{Res} dt = \Delta \overrightarrow{P}$$

$$\overrightarrow{I}_{Re} = \int_{t_1}^{t_2} \overrightarrow{F}_{Res} dt = \Delta \overrightarrow{P}$$

(Impulse - Momentum Theorem)

### COEFFICIENT OF RESTITUTION (e)

The coefficient of restitution is defined as the ratio of the impulses of reformation and deformation of either body.

$$e = \frac{Impulse \text{ of reformation}}{Impulse \text{ of deformation}} = \frac{\int F_r dt}{\int F_d dt}$$

$$e = \frac{\text{Impulse of reformation}}{\text{Impulse of deformation}} = \frac{\int F_r dt}{\int F_d dt} \qquad e = \frac{\text{Velocity of separation of point of contact}}{\text{Velocity of approach of point of contact}}$$

#### LINEAR MOMENTUM

Linear momentum is a vector quantity defined as the product of an object's mass m, and its velocity v. Linear momentum is denoted by the letter p and is called "momentum" in short:

Note that a body's momentum is always in the same direction as its velocity vector. The units of momentum are kg.m/s.

## **CONSERVATION OF LINEAR MOMENTUM**

acting on the body is zero. Then,

$$\vec{p}$$
 = constant or  $\vec{v}$  = constant  
(if mass = constant)

For a single mass or single body, If net force I If net external force acting on a system of particles or system of rigid bodies is zero. Then,

$$\overrightarrow{P}_{CM}$$
 = constant or  $\overrightarrow{V}_{CM}$  = constant



## COLLISION



Note: - In every type of collision, only linear momentum remains constant.

#### **HEAD ON ELASTIC COLLISION**



#### **Before Collision**

After Collision

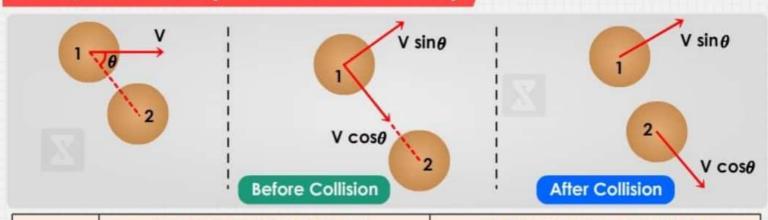
In this case, linear momentum and kinetic energy both are conserved. After solving two conservation equations. We get,

$$V'_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) V_1 + \left(\frac{2m_2}{m_1 + m_2}\right) V_2 \quad \text{and} \quad V'_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) V_2 + \left(\frac{2m_2}{m_1 + m_2}\right) V_1$$

#### **HEAD ON INELASTIC COLLISION**

- In an inelastic collision, the colliding particles do not regain their shape and size completely after the collision.
- Some fraction of mechanical energy is retained by the colliding particles in the form of deformation potential energy. Thus, the kinetic energy of the particles no longer remains conserved.
- (Energy loss)<sub>Perfectly Inelastic</sub> > (Energy loss)<sub>Partial Inelastic</sub>
- 0 < e < 1 : e = coefficient of restitution</p>

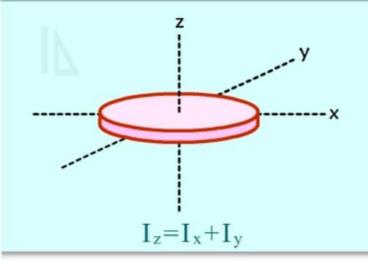
#### **OBLIQUE COLLISION (BOTH ELASTIC IN ELASTIC)**



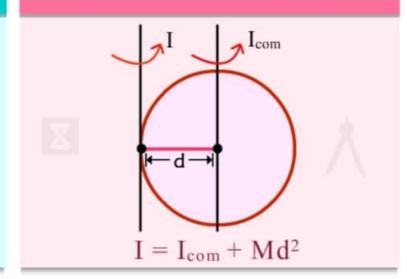
| BALL | COMPONENT ALONG COMMON TANGENT DIRECTION |                 | COMPONENT ALONG COMMON NORMAL DIRECTION |                 |
|------|------------------------------------------|-----------------|-----------------------------------------|-----------------|
|      | Before Collision                         | After Collision | Before Collision                        | After Collision |
| 1    | V sin <i>⊕</i>                           | V sin <i>⊕</i>  | V cosθ                                  | 0               |
| 2    | 0                                        | 0               | 0                                       | V cosθ          |



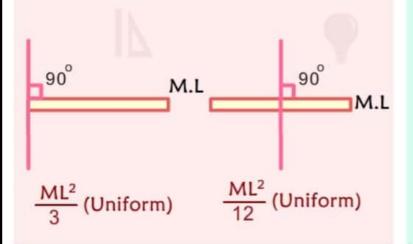
## **Perpendicular Axis Theorm**



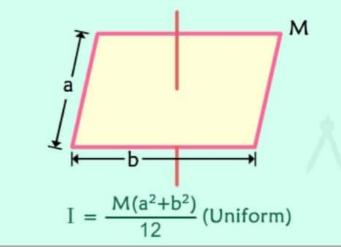
#### **Parellel Axis Theorm**



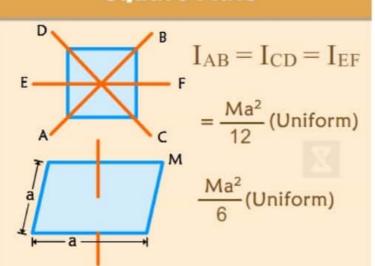
#### Rod



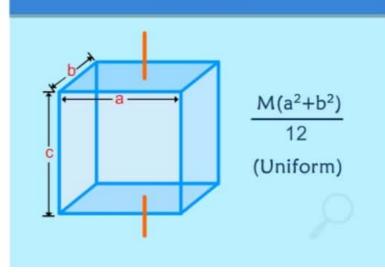
### **Rectangular Plate**



## Square Plate

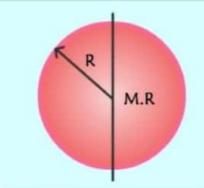


## Cuboid



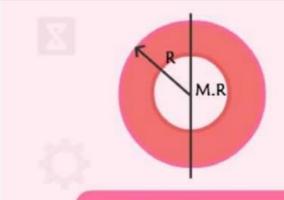
## MOMENT OF INERTIA





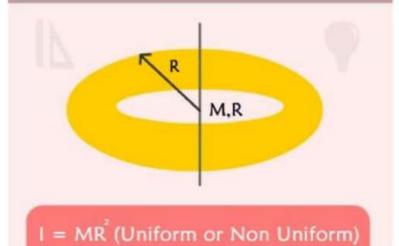
$$1 = \frac{2}{5} MR^2 (Uniform)$$

## **Hollow Sphere**

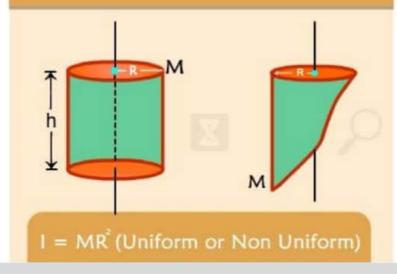


$$I = \frac{2}{3} MR^2$$
 (Uniform)

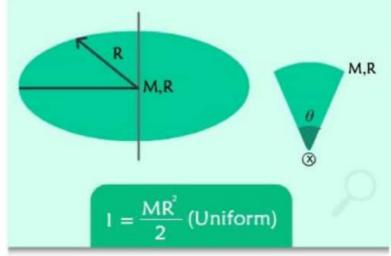
## Ring



# Hollow cylinder



## Disc



## Solid cylinder



Get More Learning Materials Here:



